Our group, led by Rajesh Ranganath, applies probabilistic approaches to tackle a wide range of fundamental challenges in machine learning. From the NYU Courant Institute of Mathematical Sciences (Computer Science), the NYU Center for Data Science, and NYU Langone Health, we focus on areas including but not limited to:

ai for healthcare and science
  1. rn3.jpg
    QTNet: Predicting Drug-Induced QT Prolongation With Artificial Intelligence–Enabled Electrocardiograms
    Hao Zhang, Constantine Tarabanis, Neil Jethani, Mark Goldstein, Silas Smith, Larry Chinitz, Rajesh Ranganath, Yindalon Aphinyanaphongs, and Lior Jankelson
    2024
  2. cobra.png
    Quantifying impairment and disease severity using AI models trained on healthy subjects
    Boyang Yu, Aakash Kaku, Kangning Liu, Avinash Parnandi, Emily Fokas, Anita Venkatesan, Natasha Pandit, Rajesh Ranganath, Heidi Schambra, and Carlos Fernandez-Granda
    npj Digital Medicine 2024
  3. zhang_physics.png
    Robust Anomaly Detection for Particle Physics Using Multi-background Representation Learning
    Abhijith Gandrakota, Lily H. Zhang, Aahlad Puli, Kyle Cranmer, Jennifer Ngadiuba, Rajesh Ranganath, and Nhan Tran
    MLST 2024
  4. adaptive.png
    Adaptive Sampling of k-Space in Magnetic Resonance for Rapid Pathology Prediction
    Chen-Yu Yen, Raghav Singhal, Umang Sharma, Rajesh Ranganath, Sumit Chopra, and Lerrel Pinto
    ICML 2024
  5. van2024causal.png
    Causal inference in oncology: why, what, how and when
    Wouter AC Amsterdam, Sjoerd Elias, and Rajesh Ranganath
    Clinical Oncology 2024
  6. van2024algorithms.png
    From algorithms to action: improving patient care requires causality
    Wouter AC Amsterdam, Pim A Jong, Joost JC Verhoeff, Tim Leiner, and Rajesh Ranganath
    BMC medical informatics and decision making 2024
  7. van2023accurate.png
    When accurate prediction models yield harmful self-fulfilling prophecies
    Wouter AC Amsterdam, Nan Geloven, Jesse H Krijthe, Rajesh Ranganath, and Giovanni Ciná
    2023
  8. van2023conditional.png
    Conditional average treatment effect estimation with marginally constrained models
    Wouter AC Van Amsterdam, and Rajesh Ranganath
    Journal of Causal Inference 2023
  9. van2022individual.png
    Individual treatment effect estimation in the presence of unobserved confounding using proxies: a cohort study in stage III non-small cell lung cancer
    Wouter AC Amsterdam, Joost JC Verhoeff, Netanja I Harlianto, Gijs A Bartholomeus, Aahlad Manas Puli, Pim A Jong, Tim Leiner, Anne SR Lindert, Marinus JC Eijkemans, and Rajesh Ranganath
    Scientific reports 2022
  10. chen2021probabilistic.png
    Probabilistic machine learning for healthcare
    Irene Y Chen, Shalmali Joshi, Marzyeh Ghassemi, and Rajesh Ranganath
    Annual review of biomedical data science 2021
  11. ecg_adversarial.png
    Deep learning models for electrocardiograms are susceptible to adversarial attack
    Xintian Han, Yuxuan Hu, Luca Foschini, Larry Chinitz, Lior Jankelson, and Rajesh Ranganath
    Nature Medicine 2020
  12. rn2.jpg
    A validated, real-time prediction model for favorable outcomes in hospitalized COVID-19 patients
    Narges Razavian, Vincent J. Major, Mukund Sudarshan, Jesse Burk-Rafel, Peter Stella, Hardev Randhawa, Seda Bilaloglu, Ji Chen, Vuthy Nguy, Walter Wang, Hao Zhang, Ilan Reinstein, David Kudlowitz, Cameron Zenger, Meng Cao, Ruina Zhang, Siddhant Dogra, Keerthi B. Harish, Brian Bosworth, Fritz Francois, Leora I. Horwitz, Rajesh Ranganath, Jonathan Austrian, and Yindalon Aphinyanaphongs
    2020
  13. clinicalbert.png
    Clinicalbert: Modeling clinical notes and predicting hospital readmission
    Kexin Huang, Jaan Altosaar, and Rajesh Ranganath
    2019
causal inference and decision making
  1. van2024causal.png
    Causal inference in oncology: why, what, how and when
    Wouter AC Amsterdam, Sjoerd Elias, and Rajesh Ranganath
    Clinical Oncology 2024
  2. van2024algorithms.png
    From algorithms to action: improving patient care requires causality
    Wouter AC Amsterdam, Pim A Jong, Joost JC Verhoeff, Tim Leiner, and Rajesh Ranganath
    BMC medical informatics and decision making 2024
  3. van2023accurate.png
    When accurate prediction models yield harmful self-fulfilling prophecies
    Wouter AC Amsterdam, Nan Geloven, Jesse H Krijthe, Rajesh Ranganath, and Giovanni Ciná
    2023
  4. van2023conditional.png
    Conditional average treatment effect estimation with marginally constrained models
    Wouter AC Van Amsterdam, and Rajesh Ranganath
    Journal of Causal Inference 2023
  5. van2022individual.png
    Individual treatment effect estimation in the presence of unobserved confounding using proxies: a cohort study in stage III non-small cell lung cancer
    Wouter AC Amsterdam, Joost JC Verhoeff, Netanja I Harlianto, Gijs A Bartholomeus, Aahlad Manas Puli, Pim A Jong, Tim Leiner, Anne SR Lindert, Marinus JC Eijkemans, and Rajesh Ranganath
    Scientific reports 2022
  6. brandfonbrener2021offline.png
    Offline rl without off-policy evaluation
    David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna
    NeurIPS 2021
  7. brandfonbrener2021offline_bandits.png
    Offline contextual bandits with overparameterized models
    David Brandfonbrener, William Whitney, Rajesh Ranganath, and Joan Bruna
    ICML 2021
generative modeling
  1. zhang_tnt.jpg
    Improving Large Language Models with Targeted Negative Training
    Lily H. Zhang, Rajesh Ranganath, and Arya Tafvizi
    TMLR 2024
  2. zhang_dpo.png
    Preference Learning Algorithms do not Learn Preference Rankings
    Angelica Chen, Sadhika Malladi, Lily H. Zhang, Xinyi Chen, Qiuyi Zhang, Rajesh Ranganath, and Kyunghyun Cho
    NeurIPS 2024
  3. local_dsm.png
    What’s the score? Automated Denoising Score Matching for Nonlinear Diffusions
    Raghav Singhal, Mark Goldstein, and Rajesh Ranganath
    ICML 2024
  4. stochastic_interpolants.png
    Stochastic interpolants with data-dependent couplings
    Michael S Albergo, Mark Goldstein, Nicholas M Boffi, Rajesh Ranganath, and Eric Vanden-Eijnden
    ICML 2024 (spotlight)
  5. where_diffuse.png
    Where to diffuse, how to diffuse, and how to get back: Automated learning for multivariate diffusions
    Raghav Singhal, Mark Goldstein, and Rajesh Ranganath
    ICLR 2023
interpretability
  1. dontbefooled.png
    Don’t be fooled: label leakage in explanation methods and the importance of their quantitative evaluation
    Neil Jethani, Adriel Saporta, and Rajesh Ranganath
    AISTATS 2023 (notable paper, oral presentation)
  2. fastshap.png
    FastSHAP: Real-Time Shapley Value Estimation
    Neil Jethani, Mukund Sudarshan, Ian Covert, Su-in Lee, and Rajesh Ranganath
    ICLR 2022 2022
  3. havewelearned.png
    Have We Learned to Explain?: How Interpretability Methods Can Learn to Encode Predictions in their Interpretations.
    Neil Jethani, Mukund Sudarshan, Yindalon Aphinyanaphongs, and Rajesh Ranganath
    AISTATS 2021
neural networks and representation learning
  1. symile_cube.png
    Contrasting with Symile: Simple Model-Agnostic Representation Learning for Unlimited Modalities
    Adriel Saporta, Aahlad Puli, Mark Goldstein, and Rajesh Ranganath
    NeurIPS 2024
  2. zhang_set_norm.png
    Set Norm and Equivariant Residual Connections: Putting the Deep in Deep Sets
    Lily H. Zhang, Veronica Tozzo, John Higgins, and Rajesh Ranganath
    ICML 2022
  3. invariantreps.png
    Learning invariant representations with missing data
    Mark Goldstein, Jörn-Henrik Jacobsen, Olina Chau, Adriel Saporta, Aahlad Manas Puli, Rajesh Ranganath, and Andrew Miller
    Conference on Causal Learning and Reasoning 2022
out-of-distribution detection
  1. cobra.png
    Quantifying impairment and disease severity using AI models trained on healthy subjects
    Boyang Yu, Aakash Kaku, Kangning Liu, Avinash Parnandi, Emily Fokas, Anita Venkatesan, Natasha Pandit, Rajesh Ranganath, Heidi Schambra, and Carlos Fernandez-Granda
    npj Digital Medicine 2024
  2. zhang_physics.png
    Robust Anomaly Detection for Particle Physics Using Multi-background Representation Learning
    Abhijith Gandrakota, Lily H. Zhang, Aahlad Puli, Kyle Cranmer, Jennifer Ngadiuba, Rajesh Ranganath, and Nhan Tran
    MLST 2024
  3. zhang_ood_aaai.png
    Robustness to Spurious Correlations Improves Semantic Out-of-Distribution Detection
    Lily H. Zhang, and Rajesh Ranganath
    AAAI 2023
  4. zhang_ood_dgm.png
    Understanding Failures in Out-of-distribution Detection with Deep Generative Models
    Lily H. Zhang, Mark Goldstein, and Rajesh Ranganath
    ICML 2021
probabilistic models and inference
  1. moran2024holdout.png
    Holdout predictive checks for Bayesian model criticism
    Gemma E Moran, David M Blei, and Rajesh Ranganath
    Journal of the Royal Statistical Society Series B: Statistical Methodology 2024
  2. where_diffuse.png
    Where to diffuse, how to diffuse, and how to get back: Automated learning for multivariate diffusions
    Raghav Singhal, Mark Goldstein, and Rajesh Ranganath
    ICLR 2023
  3. chen2021probabilistic.png
    Probabilistic machine learning for healthcare
    Irene Y Chen, Shalmali Joshi, Marzyeh Ghassemi, and Rajesh Ranganath
    Annual review of biomedical data science 2021
  4. hierarchical_variational_models.png
    Hierarchical variational models
    Rajesh Ranganath, Dustin Tran, and David Blei
    ICML 2016
  5. bbvi.png
    Black box variational inference
    Rajesh Ranganath, Sean Gerrish, and David Blei
    AISTATS 2014 (test of time award)
robustness and generalization
  1. more_is_less.png
    When more is less: Incorporating additional datasets can hurt performance by introducing spurious correlations
    Rhys Compton, Lily Zhang, Aahlad Puli, and Rajesh Ranganath
    MLHC 2023
  2. invariantreps.png
    Learning invariant representations with missing data
    Mark Goldstein, Jörn-Henrik Jacobsen, Olina Chau, Adriel Saporta, Aahlad Manas Puli, Rajesh Ranganath, and Andrew Miller
    Conference on Causal Learning and Reasoning 2022
survival analysis
  1. hu2024development.png
    Development and external validation of a dynamic risk score for early prediction of cardiogenic shock in cardiac intensive care units using machine learning
    Yuxuan Hu, Albert Lui, Mark Goldstein, Mukund Sudarshan, Andrea Tinsay, Cindy Tsui, Samuel D Maidman, John Medamana, Neil Jethani, Aahlad Puli, and  others
    European Heart Journal: Acute Cardiovascular Care 2024
  2. qi2023effective.png
    An effective meaningful way to evaluate survival models
    Shi-ang Qi, Neeraj Kumar, Mahtab Farrokh, Weijie Sun, Li-Hao Kuan, Rajesh Ranganath, Ricardo Henao, and Russell Greiner
    ICML 2023
  3. han2022survival.png
    Survival mixture density networks
    Xintian Han, Mark Goldstein, and Rajesh Ranganath
    MLHC 2022
  4. inverse_weighted_survival_games.png
    Inverse-weighted survival games
    Xintian Han, Mark Goldstein, Aahlad Puli, Thomas Wies, Adler Perotte, and Rajesh Ranganath
    NeurIPS 2021
  5. x_cal.png
    X-cal: Explicit calibration for survival analysis
    Mark Goldstein, Xintian Han, Aahlad Puli, Adler Perotte, and Rajesh Ranganath
    NeurIPS 2020
  6. deep_survival_analysis_miscouridou.png
    Deep survival analysis: Nonparametrics and missingness
    Xenia Miscouridou, Adler Perotte, Noémie Elhadad, and Rajesh Ranganath
    MLHC 2018
  7. deep_survival_analysis.png
    Deep survival analysis
    Rajesh Ranganath, Adler Perotte, Noémie Elhadad, and David Blei
    MLHC 2016

lab members
Rajesh Ranganath

Rajesh Ranganath

Principal Investigator

Aahlad Puli

Aahlad Puli

Postdoctoral Fellow

Yoav Wald

Yoav Wald

Postdoctoral Fellow

Xiang Gao

Xiang Gao

PhD Student

Mark Goldstein

Mark Goldstein

PhD Student

Nhi Nguyen

Nhi Nguyen

PhD Student

Jatin Prakash

Jatin Prakash

PhD Student

Adriel Saporta

Adriel Saporta

PhD Student

Raghav Singhal

Raghav Singhal

PhD Student

Wanqian Yang

Wanqian Yang

PhD Student

Boyang Yu

Boyang Yu

PhD Student

Lily Zhang

Lily Zhang

PhD Student

Hao Zhang

Hao Zhang

PhD Student

lab alumni
Xintian Han

Xintian Han

PhD Student

Neil Jethani

Neil Jethani

MD/PhD Student

Mukund Sudarshan

Mukund Sudarshan

PhD Student

Wouter van Amsterdam

Wouter van Amsterdam

MD/PhD Student

Rhys Compton

Rhys Compton

MS Student


Courant Institute of Mathematical Sciences

New York University

60 Fifth Avenue

New York, NY 10011

rajeshr at cims dot nyu dot edu